非ランダム性ー復元力ー

統計的性質

為替変動がランダムウォークであるとすると、ある程度長い期間での変化量の分布は正規分布になります。(中心極限定理) この仮定が正しくないことは、長時間足が正規分布でないことから言えそうですが、ここではランダムウォークと為替相場での値動きの大きさを比較します。

次の図は、ユーロドルの1分足のヒストグラムです。2010年1月4日から2020年8月7日のデータを使いました。

1分あたりの変動の標準偏差を求めると1.94pipsになります。これより、ランダムウォークを仮定すると、1日足の分布は1.94*1440^{0.5}=73.7pipsを標準偏差とする正規分布になります。次の図で、この正規分布と実際の1日足の絶対値のヒストグラムを比べてみます。

1日足の標準偏差は68.4pipsで、ランダムウォークのそれよりも5.3pips程小さくなっています。つまり、行き過ぎた変動を抑えるような復元力が作用していることが示唆されます。

本サイトの内容は、投資の勧誘を目的としたものではなく、本サイト内の情報に基づいて行った取引の損失について、本サイトは一切の責を負いかねます。当該情報の欠落・誤謬等につきましてもその責を負いかねますのでご了承ください。免責事項もご覧ください。

統計的性質

コメント

タイトルとURLをコピーしました